Versión en Español

Contents

Alleged Discrepancies

Article Reprints

Audio Resources

Bible Bullets

Darwin Day Debate

Decisive Designs

E-Books

“In the News”

Reason & Revelation

Research Articles

Scripturally Speaking

Sensible Science

Resources

Discovery for Kids

Examine the Evidence

Home Study Courses

Feedback

EBGlobal

A.P. Information

About AP

Contact AP

Copyright Statement

Help AP

Privacy Statement

Speaking Schedules

A.P. Scientists and
Auxiliary Writers


Usage Guidelines








Apologetics Press :: Reason & Revelation
June 2003 - 23[6]:49-63

The Big Bang Theory—A Scientific Critique [Part II] [Section 2]
by Bert Thompson, Ph.D., Brad Harrub, Ph.D., and Branyon May

Printer version | Email this article

Section 1 - Cosmic Microwave Background Radiation
Section 2 - The Homogeneity of the Universe
Section 3 - Can Inflationary Theory Save the Big Bang?
Section 4 - References

THE HOMOGENEITY OF THE UNIVERSE

The Big Bang model absolutely requires a uniform, homogeneous Universe. As we mentioned earlier, isotropy (matter being spread out evenly in all directions) and homogeneity (matter being spread out uniformly) are two foundational components of the standard Big Bang Theory. DePree and Axelrod addressed this fact when they wrote:

Hubble made two very important discoveries in his studies of galaxy types and distributions. He found that the universe appeared to be both isotropic (the same in all directions), and homogeneous (one volume of space is much like any other volume of space). Together, the homogeneity and isotropy of the universe make up what we call the cosmological principle: a cornerstone assumption in modern cosmology. If we could not make this assumption (based on observation), then our cosmology might only apply to a very local part of the universe. But the cosmological principle allows us to extrapolate our conclusions drawn from our local viewpoint to the whole universe (2001, p. 363, parenthetical items and italics in orig., emp. added).

Berlinski summarized the critical need for homogeneity and isotropy in this manner:

In describing matter on a cosmic scale, cosmologists strip the stars and planets, the great galaxies and the bright bursting supernovae, of their uniqueness as places and things and replace them with an imaginary distribution: the matter of the universe is depicted as a great but uniform and homogeneous cloud covering the cosmos equitably in all its secret places. Cosmologists make this assumption because they must. There is no way to deal with the universe object by object; the equations would be inscrutable, impossible to solve.

Having simplified the contents of the universe, the cosmologist must take care as well, and for the same reason, to strip from the matter that remains any suggestion of particularity or preference in place. The universe, he must assume, is isotropic. It has no center whatsoever, no place toward which things tend, and no special direction or axis of coordination. The thing looks much the same wherever it is observed.

The twin assumptions that the universe is homogeneous and isotropic are not ancillary but indispensable to the hypothesis of an expanding universe; without them, no conclusion can mathematically be forthcoming (1998, pp. 34-35, emp. added).

But how, exactly, could the Big Bang account for the homogeneity that is supposed to exist within the Universe? That question, in fact, was one of six major problems with the standard Big Bang model that Andrei Linde discussed at length in his widely heralded November 1994 Scientific American article. Number five in that list was the following.

Fifth, there is the question about the distribution of matter in the universe. On the very large scale, matter has spread out with remarkable uniformity. Across more than 10 billion light-years, its distribution departs from perfect homogeneity by less than one part in 10,000. For a long time, nobody had any idea why the universe was so homogeneous. But those who do not have ideas sometimes have principles. One of the cornerstones of the standard cosmology was the “cosmological principle,” which asserts that the universe must be homogeneous. This assumption, however, does not help much, because the universe incorporates important deviations from homogeneity, namely, stars, galaxies, and other agglomerations of matter. Hence, we must explain why the universe is so uniform on large scales and at the same time suggest some mechanism that produces galaxies (1994, 271:49, emp. added).

The fact is, as Dr. Linde so eloquently pointed out, the Universe is “lumpy.” Really lumpy! In a survey that covered one hundred-thousandth of the visible Universe, Margaret Geller and John Huchra (1989) identified a huge sheet-like structure that came to be called the “Great Wall.” It contains thousands of galaxies, and extends at least 550 million light-years across the sky. Another survey, covering one two-thousandth of visible space, showed that the Universe does appear uniform—but only on scales larger than 150 million light-years (Cowen, 1990).

As it turns out, there are at least two serious problems with any suggestion that the Universe exhibits homogeneity. First, homogeneity can be defended only if one considers the matter present in the Universe at distances greater than 150 million light-years. When it comes to getting “up close and personal,” so to speak, the concept of homogeneity collapses completely—as Dr. Linde himself noted.

Second, a serious problem arises even when considering the matter of the Universe at distances greater than the 150-million-light-year cut-off point. A report by Saunders, et al. (1991), based on data from the Infrared Astronomical Satellite (IRAS), documented beyond doubt that there is more structure on large scales than is predicted by, or possible with, the standard cold dark matter theory of galaxy formation—which led the entire group of ten authors who performed the research and authored the report to disavow completely the standard Big Bang theory. What shocked the scientific community was that the group included researchers who once were ardent supporters of the theory. The standard Big Bang Theory cannot account for the non-homogeneity of the Universe, which was Berlinski’s point when he concluded: “However useful the assumption of homogeneity may be mathematically, it is false in the straightforward sense that the distribution of matter in the universe is not homogeneous at all” (p. 35, emp. added). Or, as Linde (quoted above) remarked with elegant understatement: “The universe incorporates important deviations from homogeneity.” Indeed it does.

DARK MATTER AND OUR
“PRECARIOUSLY BALANCED” UNIVERSE

In any Big Bang scenario—according to evolutionists’ assumptions about the initial conditions—the Universe can contain no more than 10% protons, neutrons, and other ordinary matter found in stars, planets, galaxies, etc. What makes up the rest of the matter—90+% of the Universe—is still a mystery. As one physicist put it: “Astronomers therefore have no idea of the composition of the bulk of the entire universe. So much for a fundamental understanding of the physical universe” (DeYoung, 2000, 36:177).

Cosmologists do not know what the “mysterious stuff ” is that composes “the bulk of the entire Universe.” Nor have they found any credible, direct evidence of its existence. They refer to it as “cold dark matter” [CDM] (and/or “dark energy”—discussed later). As Stacy McGaugh wrote in Astrophysics Journal : “As yet, we have no direct indication that CDM exists” (2000, 541:L33). A year later, John Hartnett wrote in agreement: “The dynamic behaviour of galaxies and galactic clusters begs for dark matter, as will be explained later, but to date, none has been found” (2001, 15[1]:9).
Figure 5

Figure 5 — Chart depicting the percentages of dark energy, dark matter, and actual matter (i.e., atoms) that must be present in order to explain the composition of the Universe via the Big Bang model

The mysterious and elusive “cold dark matter” is “cold” because it cannot interact with other matter (except gravitationally), and “dark” because it emits no detectable radiation, and therefore cannot be seen. In the March 2003 issue of Scientific American, David Cline authored an article titled “The Search for Dark Matter,” in which he noted: “Being dark, it was never able to lose energy by emitting radiation, so it never could agglomerate into subgalactic clumps such as stars or planets” (288[3]:52). [In the scientific literature, cold dark matter also is referred to as “missing mass,” “hidden matter,” and “shadow matter.”] Carl Sagan once described it as “dark, quintessential, deeply mysterious stuff wholly unknown on earth” (1994, p. 399). In his Scientific American article, Cline commented on this “unknown material” that makes up most of the Universe:

The terms we use to describe its components, “dark matter” and “dark energy,” serve mainly as an expression of our ignorance.... Essentially, all we know is that dark matter clumps together, providing a gravitational anchor for galaxies and larger structures such as galaxy clusters.... To detect dark matter, scientists need to know how it interacts with normal matter. Astronomers assume that it interacts only by means of gravitation, the weakest of all the known forces of nature. If that really is the case, physicists have no hope of ever detecting it (288[3]:52,54, emp. added).

Cline also noted that even though, after seventy years of looking for it, we have no proof of the existence of dark matter, nevertheless, “nearly everyone accepts that it is real” (288[3]:52). Why is this so? The fact is, evolutionists must have this matter to support their theories. As DeYoung put it: “Popular versions of the big bang model require immense amounts of dark matter existing throughout space” (36:177, emp. added). Yes, they do, for two reasons. First, dark matter is necessary in order to allow for expansion and galaxy formation. If this “extra” matter did not exist, the ordinary matter of the Universe would have scattered into the empty reaches of space without ever coming together to form galaxies. Second, dark matter is mandatory for the success of the inflationary model of the origin of the Universe, and to ensure that the structure of the Universe is “flat,” thereby guaranteeing that it will continue without end (concepts discussed below).

According to evolutionary cosmologists, the baffling yet profuse substance known as dark matter is present throughout the Universe, and, in fact, is the “invisible glue that holds it all together” (Lerner, 1991, p. 13; cf. DeYoung, 2000, 36:177). What is dark matter? DeYoung noted: “This is an unanswered question since dark matter has never been directly observed, and may not even exist.... In reality, however, the dark matter mystery remains completely unsolved after seven decades of intense study” (36:180,181).

Matter supposedly comes in a variety of types and forms: baryonic and non-baryonic, as well as cold and hot. Baryonic matter represents all the conventional matter (what Cline called “normal matter”) comprised of protons and neutrons. Non-baryonic dark matter is any matter not of a conventional nature—i.e., not composed of protons and neutrons. The “cold” and “hot” designations apply to this latter form only, and have to do with its motion [slow (cold) vs. fast (hot)] in relation to gravity. According to their own studies, evolutionists have concluded that the Universe is composed of a mere 4% baryonic matter, which leaves 96% of the Universe as “dark” matter and/or “dark” energy. In an article titled “Cosmology Gets Real” that appeared in the March 13, 2003 issue of Nature, staff writer Geoff Brumfiel wrote:

With the addition of the latest data on the CMB [cosmic microwave background radiation—BT/BH/BM], courtesy of NASA’s Wilkinson Microwave Anisotropy Probe, our picture of the universe is now clearer than ever. CMB studies have confirmed that the Universe is indeed flat. The Wilkinson probe has now set ratios for the composition of the cosmos: 23% dark matter and 73% dark energy, leaving only 4% for the galaxies, stars and people (422:109, emp. added).

Or, to echo the sentiments of cosmologist Michael Turner of the University of Chicago: “Ninety-six percent of the Universe is stuff that we’ve never seen” (as quoted in Brumfiel, 422:109) [see Figure 5].

Of the unseen Universe, dark matter is believed to constitute one third (33%) of its total mass (Milgrom, 2002, 287[2]:44). And, “the galaxy motions suggest that the dark matter mass totals at least ten times that of all the visible galaxies” (DeYoung, 36:178). However, perhaps it would be wise to heed the evolutionists’ own warning:

Many suggestions have been made concerning the nature of the missing dark matter. Before embarking on flights of fancy, the reader should bear in mind that the astronomical evidence for a universe dominated by exotic forms of matter is slim, and the laboratory evidence for the various proposed candidates is equally slim. Effective inflation, unless finely tuned, mandates the missing matter, yet we do not know what form it takes and so far have no evidence that it actually exists (Harrison, 2000, p. 468, emp. added).

In his article in Nature on the character of the Cosmos, Brumfiel concluded: “...[T]he holes in our knowledge are still considerable. Researchers are confident that dark energy and dark matter are out there, but they don’t know what kind of entities they are or how to find them” (422:109).

But those “minor inconveniences” have not stopped those same researchers—in a last-ditch effort to establish the validity of their theories—from assigning actual percentages to the amount of dark matter that is supposed to exist, nor from giving specific names to its supposed forms. Some of these non-baryonic members allegedly include such eerie things as axions (named, believe it or not, after a laundry detergent!), WIMPS (weakly interacting massive particles), CHAMPs (Charged Massive Particles), and MACHOs (MAssive Compact Halo Objects) [Glashow, 1989; Palca, 1991; Silk, 1991]. Karen Fox admitted:

The fact is that the dark matter problem is reaching something of a crisis, although few astronomers have been willing to admit this yet. Forget not finding any ideal dark matter candidates. The problem isn’t that no one can find the missing matter (although they can’t) but that even if theorists stomp their feet and shake their heads, observations haven’t even shown that the universe is at the critical density (2002, pp. 122-123, parenthetical item in orig.).

But if “observations haven’t even shown that the universe is at the critical density,” then that plays havoc with the idea of inflation producing a Big-Bang-type of Universe that is flat, and that will expand indefinitely. As Fox casually remarked: “The dark matter problem affects the basics of the big bang model” (p. 124). It certainly does! John Gribbin confirmed such a position when he wrote that dark matter, “in a nutshell, is one of the biggest problems in cosmology today” (1981, pp. 315-316). Note the dates on these seemingly parallel statements. Interesting, is it not, that more than twenty years separate them, yet dark matter still “is one of the biggest problems in cosmology today”? [The reader may want to investigate the views of physicist Mordehai Milgrom of the Weizmann Institute of Science in Rehovot, Israel (see Milgrom, 2002). Dr. Milgrom has suggested that instead of opting for dark matter, cosmologists need to “re-tool the laws of physics,” which he proposes to do via his concept known as Modified Newtonian Dynamics (MOND). Like American astronomer Halton Arp, Dr. Milgrom is viewed as somewhat of a heretic. In fact, “Dark-Matter Heretic” was the title of an article on the American Scientist Web site’s “Science Observer” for January-February 2003 (see “Dark-Matter...”).]

The fact is, the existence of dark matter is not merely a theoretical prediction, but rather a necessary invention—one that is required to fill the gaping holes in Big Bang cosmology and its cousin, inflationary theory (more about this shortly). Incredibly, the hypothetical construct invented to investigate the theory has become the main support for the theory. [As Berlinski put it: “The wish is father to the act” (1998, p. 31).] The importance of dark matter to evolutionary cosmology cannot be overstated. As Fox admitted: “Dropping dark matter out of their models would make it impossible for theorists to understand how a universe could get from the big bang to what it looks like today” (p. 124). Yes, it most definitely would, as Harnett went on to explain:

These two issues [the existence of dark matter, and the microwave background radiation—BT/BH/BM] are fundamentally important to the evolutionary cosmologist. The missing dark matter in galaxies, galaxy clusters, and the whole universe, and the smoothness of the CMB radiation, create unassailable problems in the formation of stars and galaxies in the “early universe.” ...The important questions left unanswered, of course, concern how stars and galaxies could have originated (2001, 15[1]:10).

On another front, an immense amount of time and energy has been expended in an attempt to determine the ultimate fate of the Universe. Will it collapse back on itself in a “Big Crunch,” or will it simply continue expanding? Scientists have denoted the difference in these two—eventual contraction versus eternal expansion—as the Universe’s “critical density.” Simply put, if the mass density of the Universe itself is larger than the critical density, then gravity will prevail and the Universe allegedly will experience a Big Crunch. If the mass density of the Universe is lower than the critical density, then the Universe will expand forever, accelerating until it experiences a “Big Chill” (see Figure 6).

A third option is supposed to exist, however, when the mass density of the Universe is exactly equal to the critical density. According to scientists, this would allow the expansion of the Universe to continue forever (even though the speed at which the Universe expands would decrease somewhat over time). To quote DeYoung:

Dark matter is also involved in the popular inflationary big bang model which predicts that the curvature of the universe must be flat. This means that the density of matter is exactly balanced between a universe which eventually collapses (a closed, finite universe), and one which expands forever (an open, infinite universe). The required critical density for a flat universe is about 10-26 g/cm3. This corresponds to approximately 10 hydrogen atoms per cubic meter of space. Observed density estimates, although crude, lead to a value 10-100 times smaller than the critical density. Therefore, a great amount of dark matter is needed to result in a flat, closed universe with zero curvature (2000, 36:180, parenthetical items in orig.).

In theory, scientists should be able to determine the fate of the Universe. In practical terms, however, there are major problems. One of the most important, as Dr. DeYoung has pointed out, is that there simply is not enough “ordinary” (observable) matter in the Universe to account for the observed gravitational forces that are holding galaxies together. Nor is there enough ordinary matter to ensure the “zero curvature” required by the inflationary concept (discussed in detail below) to guarantee the continued expansion of the Universe. Thus, in an attempt to salvage their naturalistic theories of the origin of the Universe, scientists simply invented dark matter. We say “invented” because dark matter is something that has been neither seen nor measured. As one scientist put it:

So, cold dark matter is an unknown, unseen substance that is, nonetheless, essential to the process of self-creation.... Unfortunately, 90-99% of this matter is missing from the Universe. At this point, the Big Bang starts to bear striking similarities to the fable of the emperor’s invisible new clothes (Major, 1991, 11:23).

This is hardly an overstatement. An experimental report by French astronomers, Crézé, et al., in Astronomy and Astrophysics (1998), concluded that there is no dark matter in the disk of the Milky Way Galaxy. In commenting on the research, Alexander Hellemans wrote in Science shortly before the report by Crézé and his coworkers was published:

By studying the movement of stars in the disk of our Milky Way galaxy, two teams of French astronomers have concluded that what you see is what you get: The mass of the visible stars appears to account for all the material in the galactic disk. These findings, derived from data gathered by the European astrometric satellite Hipparcos, imply that the main body of our galaxy contains no “dark matter”—invisible material that astronomers believe accounts for up to 90% of the mass of the universe (1997, 278:1230, emp. added).

Click image for larger picture.
Figure 6

Figure 6 — Three models depicting the possible fate of the Universe from an evolutionary viewpoint. (1) In an expanding Universe, the combined gravity from the matter slows expansion. If the pull is strong enough, the expansion will stop and reverse itself, resulting in a “Big Crunch.” (2) If the gravitational forces equal the expansion forces, then the Universe theoretically will continue forever (even though expansion slows down over time). (3) If gravitational forces are not strong enough, and are overcome by expansion forces, then the Universe supposedly will continue to expand, eventually ending in a “Big Chill.”

Dr. Crézé and his colleagues analyzed the motion of stars perpendicular to the galactic disk in a sphere of radius 125 parsecs around the Sun. By analyzing the distribution of motion for 100 stars, the team was able to analyze the gravitational pull dragging them back toward the galactic disk. Why is this type of research important? Nature staff writer Brumfiel explained when he wrote in regard to dark matter:

The key to understanding it lies in its effects on stars and galaxies. According to general relativity, all mass distorts the space around it. When light from distant objects passes close to dark matter, it should be bent—a process called gravitational lensing.... Cosmologists also know a little about how dark matter interacts with other matter. The faster a particle moves, the more energy it transfers to any particles that it collides with. If, during the early Universe, dark matter was moving at close to the speed of light, it would have left its mark on the process by which matter clumped together to form stars and galaxies. But astronomers can watch star and galaxy formation occurring in very distant parts of the Universe, and so far they have not seen any evidence of the influence of fast-moving dark matter (2003, 422:109-110, emp. added).

The experimental research of Crézé, et al., agrees perfectly with Brumfiel’s assessment—since the French team found no evidence of fast-moving dark matter in the Milky Way Galaxy.

Some might criticize the research of Crézé’s team as being too small a sample in too small of a volume. Such criticism is muted, however, in a Ph.D. dissertation by Honc-Anh Pham of the Paris Observatory. She analyzed the motion of 10,000 stars in the Milky Way disk (as opposed to Crézé’s 100). Pham’s research produced a result similar to that of Crézé, et al. As Pham remarked: “These studies confirm that the dark matter [presumed to be] associated with the galactic disc in fact doesn’t exist” (as quoted in Hellemans, 278:1230, emp. added).

One implication of this research could be that the Milky Way Galaxy is much younger than evolutionary astronomers believe. If our galaxy were representative of other galaxies, then it also would imply a much younger Universe as a whole. Have such astronomers abandoned the dark matter hypothesis and deduced a much younger Universe? Hardly! Instead, they have merely argued that the dark matter must be lurking in the halo of the Milky Way, rather than in the disk. The galactic halo is a large, spherical area that encircles the galaxy, and contains such things as dust, gas, and globular clusters. However, other scientists have debunked the idea that dark matter resides in the halo, and have concluded that the “dark chunks” previously reported in 1995 and 1996 (see Glanz, 1996) are very likely nothing but dim stars in the Magellanic Clouds (see Glanz, 1998, 281:332-333). Nathalie Palanque-Delabrouille of the Centre d’Études de Saclay in France concluded: “A halo interpretation of the other candidates becomes dubious” (as quoted in Glanz, 281:333). James Glanz, in reporting on this for Science, wrote: “One of astronomy’s great mysteries, it seems, is still unsolved.... That’s bad news for astronomers, who thought they finally had an answer to the puzzle of what could be holding galaxies together” (281:332,333).

The “other” bad news is—that’s not all the bad news! Read on.

DARK ENERGY

As we noted previously, the concept of the Universe’s expansion is critical to the Big Bang Theory and its cosmological cousin, Inflationary Theory. David Cline, in his March 2003 article on dark matter for Scientific American, noted: “Dark energy, despite its confusingly similar name [to dark matter—BT/BH/BM], is a separate substance that entered the picture only in 1998. It is spread uniformly through space, exerts a negative pressure and causes the expansion of the universe to accelerate” (288[3]:52). Geoff Brumfiel, writing in the March 13, 2003 issue of Nature about scientists’ efforts to figure out why the Universe is expanding, observed that certain scientists have made

an extraordinary suggestion: that the expansion of the Universe is accelerating, pushed outwards by some kind of phantom force for which there was no explanation. This phenomenon of dark energy seemed odd. But according to the general theory of relativity, mass and energy are equivalent. And when cosmologists looked at the amount of energy they needed to create the mysterious force, they found that it accounted perfectly for the mass still missing from their picture (422:109, emp. added).

Thus was born the idea of “dark energy.” In the June 25, 2001 issue of Time, staff writer Michael Lemonick authored an article titled “The End,” in which he commented: “...[A]strophysicists can be pretty sure they have assembled the full parts list for the cosmos at last: 5% ordinary matter, 35% exotic dark matter and about 60% dark energy” (157[25]:55). Astrophysicist John Barrow (co-author with Frank Tipler of the 1986 classic, The Anthropic Cosmological Principle) has suggested that the force of this dark energy is alleged to be “fifty per cent more than that of all the ordinary matter in the Universe” (2000, p. 191). That “dark energy” is the “phantom force” of which Brumfiel spoke. Or as science writer Paul Preuss remarked, it is an “an unknown form of energy often called the cosmological constant” (see Preuss, 2000).

Ah, yes—the famed “cosmological constant.” Albert Einstein was the first to introduce the concept of the so-called cosmological constant—which he designated by the Greek letter Lambda (Λ)—to represent this “phantom force” or “unknown form of energy.” It is—to be quite blunt—nothing more than a “fudge factor” set in place to make modern cosmology possible.

But this is no ordinary fudge factor. It happens to be, as Barrow correctly noted, “the smallest number ever encountered in science.” And, as he went on to observe, the value of lambda

is bizarre: roughly 10-120—that is, 1 divided by 10 followed by 119 zeros! This is the smallest number ever encountered in science. Why is it not zero? How can the minimum level be tuned so precisely? If it were 10 followed by just 117 zeros, then the galaxies could not form. Extraordinary fine-tuning is needed to explain such extreme numbers.... Why is its final state so close to the zero line? How does it “know” where to end up when the scalar field starts rolling downhill in its landscape? Nobody knows the answers to these questions. They are the greatest unsolved problems in gravitation physics and astronomy.... The only consolation is that, if these observations are correct, there is now a very special value of lambda to try to explain (pp. 259,260-261, emp. added).

A “very special value” indeed! Why is it so vanishingly small? Efstathiou, et al., writing on “The Cosmological Constant and Cold Dark Matter” in Nature, lamented:

The cosmological term is a potential correction to the gravitational interaction. If present at all, the cosmological term is incredibly small: Its cumulative effects would show up only at the very largest length scales. However, there is no compelling understanding of why the term is small (1990, 348:705-707, emp. and italics added).

Nature’s Brumfiel admitted:

Dark energy is a more vexing problem, but the solution could lie in the nature of empty space. According to quantum theory, particles and their antiparticle equivalents are continually being created and annihilated, even in a vacuum. Some researchers have speculated that this vacuum energy could be what is accelerating the Universe’s expansion. But theoretical predictions for vacuum energy are up to 120 orders of magnitude greater than the strength of dark energy seen today (2003, 422:110, emp. added).

What?!—120 orders of magnitude greater than the strength of dark energy seen today? That implies that we have “seen” dark energy “today.” But we have not! Similar to dark matter, “dark energy” is another mysterious concept that has been fabricated because the “theory still isn’t jibing perfectly with observation” (Fox, p. 143). “Isn’t jibing perfectly” is yet another magnificent understatement, considering that just previously, Fox had this to say concerning the present situation:

For one thing, when the math was done to find what the cosmological constant should be via theory, it was 10120 (that’s a 1 followed by 120 zeros) times bigger than what we actually witness. A cosmological constant that large would mean that everything in the universe should be expanding so quickly that you would not be able to see beyond the end of your nose (p. 143, parenthetical item in orig., emp. added).

What did Fox say—a 1 followed by 120 zeros? In the normal realm of science, that sort of error would be nothing short of catastrophic. No, on second thought, it would not even be scientific. Nobel Laureate Steven Weinberg, in his book The First Three Minutes, commented on this horrendous figure and its potential acceptance: “If we were to take this calculation seriously, it would undoubtedly be the most impressive quantitative disagreement between theory and experiment in the history of science!” (1977, p. 186). Or, to quote cosmologist Michael Turner: “Those models raise more questions than they answer. We’ve flushed out the basic features of the Universe. What we need now is a good story” (as quoted in Brumfiel, 422:110). “A good story” is exactly the foundation on which evolutionary cosmology has been constructed. It appears that Mark Twain was correct when he wrote in Life on the Mississippi: “There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact” (1883, p. 156).



Copyright © 2003 Apologetics Press, Inc. All rights reserved.

This document may be copied, on the condition that it will not be republished in print unless otherwise stated below, and will not be used for any commercial purpose, as long as the following stipulations are observed: (1) Apologetics Press must be designated as the original publisher; (2) the specific Apologetics Press Web site URL must be noted; (3) any references, footnotes, or endnotes that accompany the article must be included with any written reproduction of the article; (4) textual alterations of any kind are strictly forbidden; (5) Some illustrations (e.g., photographs, charts, graphics, etc.) are not the intellectual property of Apologetics Press and as such cannot be reproduced from our site without consent from the person or organization that maintains those intellectual rights; (6) serialization of written material (e.g., running an article in several parts) is permitted, as long as the whole of the material is made available, without editing, in a reasonable length of time; (7) articles, in whole or in part, may not be offered for sale or included in items offered for sale; and (8) articles may be reproduced in electronic form for posting on Web sites pending they are not edited or altered from their original written content and that credit is given to Apologetics Press, including the web location from which the articles were taken. Further, documents may not be copied without source statements (title, author, journal title), and the address of the publisher and owner of rights, as listed below.

For catalog, samples, or further information, contact:

Apologetics Press
230 Landmark Drive
Montgomery, Alabama 36117
U.S.A.
Phone (334) 272-8558
http://www.apologeticspress.org



Web site engine code is Copyright © 2003 by PHP-Nuke. All Rights Reserved. PHP-Nuke is Free Software released under the GNU/GPL license.
Page Generation: 0.142 Seconds